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Definition: � is said to be locallylp-constructible if there exist a
function� of classK, a neighborhoodV of zero inRn; and a time
t1 � 0 such that for everyx0 2 V

kg(�(:; 0; x0; 0); 0kp � �(j�(t1; 0; x0; 0)jp):

If V = Rn, then� is said to be globallylp-constructible.
Remark 2: lp-observability corresponds to the caset1 = 0,

and therefore it implieslp-constructibility. The difference between
these two notions is the following: roughly speaking, in the
case of lp-observability one is able to detect from the output
y = fy(0); y(1); � � �g a nonzero initial statex0 at time zero; in
other words, this nonzero initial state can be detected using only
present and future outputs. In the case oflp-constructibility one is
able to detect from the outputy a nonzero statex1 at time t1; in
other words, this state can be detected using a finite number of
past outputs, present, and future ones. The error of Proposition 6)1

regarding thelp-observability of�d is closely connected to this
difference. It is proven that ifu = 0 andxh is any state at timeh,
one haskykp � jxhjp. In other words, the following result only has
been proven [instead of 4)].

Proposition 1: �d is globally lp-constructible.
As was said above, in the case of a linear system,lp-constructibility

is equivalent to the usual constructibility:
Proposition 2: Consider the linear time-invariant system�l de-

fined byx(t + 1) = Ax(t); y(t) = Cx(t). For anyp 2 [1;1], the
pair (C;A) is constructible (in the usual sense) if, and only if�l

is lp-constructible.
Proof:

1) Assume that(C;A) is constructible, i.e.,

Ker 
 � KerA
n (5)

where
 = [CT ; ATCT ; � � � ; (AT
)
n�1CT

]
T . In other words,

there exists a linear mapping	 : Rqn ! Rn such that
An

= 	
. Therefore,x(n) = 	[y(0)T ; � � � ; y(n � 1)
T
]
T ,

hencejx(n)jp � k	kkykp and�l is lp-constructible.
2) Conversely, assume that(C;A) is not constructible. Then, there

exists an initial statex0 in Ker 
 which does not belong to
KerAn. It follows that for anyk � 0; x0 cannot belong to
KerAk; hence for everyk � 0; x(k) is nonzero, whereas
y = 0. Therefore,�l is not lp-constructible.

Let us now consider again the nonlinear system�. The following
result is a refinement of Proposition 4.1

Proposition 3: Assume that� is locally lp-reachable, locallylp-
constructible, and that the associated input–output operator is locally
lp-stable. Then, for anyp 2 [1;1], zero is a stable equilibrium point
(in the sense of Lyapunov) of the unforced system associated with�.
This equilibrium point is locally asymptotically stable ifp <1. This
result still holds if “locally” is replaced everywhere by “globally.”

Proof: The proof is identical to that of Proposition 41 up to
the point wherelp-observability is used. Assuming that� is locally
lp-constructible, there exist a timet1 and a function� of classK
such thatky � yt�t �1kp � �(jx(t)jp); 8t � � + t1, if the initial
statex0 at time� is small enough. In addition, as the functionf is
continuous, the statex(t) at timest such that� � t � � + t1 � 1

are made arbitrarily small by takingx0 small enough. The rest of the
proof is identical to that of Proposition 1.1
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Simple Optimization Problems via Majorization Ordering

Young B. Kim and Armand M. Makowski

Abstract—We introduce and explicitly solve a novel class of optimization
problems which are motivated by load assignment issues in crossbar
switches with output queueing. The optimization criterion is given in the
majorization ordering sense. The solution to these problems indirectly
provides solutions to a large class of convex optimization problems under
a linear constraint.

Index Terms—Convex optimization, crossbar switches, majorization,
output queueing, Schur-convex mappings.

I. INTRODUCTION

The notion of majorization (and its derivatives) provides a powerful
tool to formalize statements concerning the relative size of the
components of two vectors, viz., the components(x1; � � � ; xK) of
the vectorx are “less spread out” than the components(y1; � � � ; yK)

of the vectory. As elegantly demonstrated in the monograph of
Marshall and Olkin [4], these notions have found widespread use in
many diverse fields of mathematics and their applications. Recently,
several authors have made use of majorization ideas to identify
optimal scheduling and load balancing strategies for various resource
allocation problems [1], [2]. In this paper, we consider a novel class
of optimization problems which are motivated by load assignment
issues in crossbar switches with output queueing; this application is
discussed in some detail in Sections III and IV. These optimization
problems are in the majorization sense and have the following generic
form: for every vectorp in IR

K

+ and every constantc > 0, we define
the subsetA(p; c) of [0; 1]

K by

A(p; c) � 2 [0; 1]
K

:

K

k=1

pk�k = c :

This setA(p; c) is nonempty wheneverc satisfies the condition

0 < c <

K

k=1

pk: (1)
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With � denoting the majorization ordering (a precise definition is
given at the end of this section), we seek vectors+ and � in
A(p; c) such that

(
�

;p) � ( ;p) � (
+
;p); 2 A(p; c) (2)

where we have used the notation

( ;p) � (�1p1; � � � ; �KpK); 2 [0; 1]
K
; p 2 IR

K

+ :

Explicit expressions for the optimizers+ and � in terms
of c and p are presented in Section II under the mild condition
mink=1;���;K pk > 0. In addition to answering some natural questions
raised by the results of [3], the material of Section II contains a
curious byproduct which is of independent interest, especially to
readers interested in convex optimization, and which we now develop.

When identifying � [Theorem 2], we shall find it convenient
to associate withA(p; c) another subsetB(p; c) � f( ;p); 2
A(p; c)g. The setB(p; c) is also characterized by

B(p; c)

� x 2 IR
K

: 0 � xk � pk; k = 1; � � � ; K;

K

k= 1

xk = c (3)

and is in one-to-one correspondence withA(p; c) through the trans-
formations

x = ( ;p) if and only if �i =
xi

pi
; i = 1; � � � ; K: (4)

The original problem of finding � and + in A(p; c) satisfying
(2) is equivalent to that of finding elementsx� andx+ in B(p; c)
such that

x
� � x � x

+
; x 2 B(p; c) (5)

with x and related through (4).
The relation� being a partial ordering onIRK , it is natural

to seek the mappings' : IRK ! IR which are monotonic for
the majorization ordering�, i.e., mappings with the property that
'(x) � '(y) wheneverx � y. Such mappings are called Schur-
convex mappings in honor of Schur who first studied them; the class
of Schur-convex functions is very large and includes convex and
symmetric mappings [4, C.2, p. 67] among other things. From (5)
we conclude that

'(x
�

) � '(x) � '(x
+
); x 2 B(p; c) (6)

for any Schur-convex function' : IRK ! IR, and the vectorx�

(respectively,x+) is thus a solution to the optimization problem

Minimize (respectively, Maximize)' over the setB(p; c): (7)

Note that the samevector x� (respectively,x+) simultaneously
solvesall the corresponding problems (7) with Schur-convex func-
tions '.

Regarding the notation, thekth component of any elementx in
IRK is denoted either byxk or by xk; k = 1; � � � ; K, so thatx �
(x1; � � � ; xK) or (x1; � � � ; xK). A similar convention is used forIRK-
valued random variables (rv’s). For any vectorx = (x1; � � � ; xK) in
IRK , let x(1) � x(2) � � � � � x(K) denote the components ofx
arranged in increasing order. For vectorsx and y in IRK , we say
thatx is majorizedby y, and writex � y, whenever the conditions

k

i= 1

x(i) �

k

i=1

y(i); k = 1; 2; � � � ; K (8)

and
K

i= 1

xi =

K

i= 1

yi (9)

hold. If conditions (8) all hold without (9), then we say thatx is
weakly supermajorizedby y and writex �w

y [4, A.2, p. 10].

II. THE MAIN RESULTS

In this section we establish the existence of and expressions for the
vectors � and + satisfying (2). Throughout we assume the vector
p to be selected so that

0 < p1 � p2 � � � � � pK (10)

and we leave it to the reader to check that there is no loss of generality
in doing so.

Theorem 1: Assume (1) and (10) hold.

1) If c � pK , then the vector + � (0; � � � ; 0; c

p
) is an element

of A(p; c) which satisfies

( ;p) � (
+
;p); 2 A(p; c): (11)

2) If pK < c, there exists a unique integerm (m = 2; � � � ; K)

such that
K

k=m

pk � c <

K

k=m�1

pk (12)

and the vector + defined by

+ � 0; � � � ; 0

m�2

;
c� K

k=m
pk

pm�1

; 1; � � � ; 1

K�m+1

(13)

is an element ofA(p; c) which satisfies (11).

Proof—Claim 1: If c < pK , then the vector(0; � � � ; 0; c

p
) is

indeed an element ofA(p; c), and the validity of (11) is well known
in that case.

Claim 2: SetQi �
K

k=i
pk; i = 1; � � � ; K. ConditionpK < c

and (1) together implyQK < c < Q1. The existence and uniqueness
of the integerm satisfying (12) immediately follows from the strict
monotonicity ofc � Qi; i = 1; � � � ; K, a fact implied by (10). We
also conclude from (1) that2 � m � K and + is well defined.
The definition (12) ofm yields 0 � �+

m�1 < 1, and + is therefore
an element ofA(p; c). It is also plain that�+1 p1 � �+2 p2 � � � � �
�+
K
pK .

To establish (11) for some in A(p; c), it suffices to show that
for any permutation� of f1; � � � ; Kg, we have the inequalities

K

i= k

��(i)p�(i) �

K

i= k

�
+
i
pi; k = 1; � � � ; K: (14)

Using (13) and the definition ofA(p; c), we see that

K

i= k

��(i)p�(i) � c =

K

i= k

�
+
i
pi; k = 1; � � � ;m� 1

and (14) thus holds fork = 1; � � � ;m�1. On the other hand, because
��(i) � �+

i
= 1; i = m; � � � ; K, we have from (10) that

K

i= k

��(i)p�(i) �

K

i= k

p�(i) �

K

i= k

�
+
i
pi; k = m; � � � ; K

and (14) also holds fork = m; � � � ; K.
The quantitiesD0 � Kp1 � c and

Ds � (K � s)ps+1 � c�

s

i=1

pi ; s = 1; � � � ; K � 1

will be useful for characterizing the vector� which satisfies (2).
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Theorem 2: Assume (1) and (10) hold.

1) If c � Kp1, then the vector � � ( c

Kp
; � � � ; c

Kp
) is an

element inA(p; c) which satisfies

( �

;p) � ( ;p); 2 A(p; c): (15)

2) If Kp1 < c, then there exists an integert (t = 1; 2; � � � ; K�1)
such that

Dt�1 � 0 � Dt (16)

and the vector � defined by

�

� 1; � � � ; 1

t

;
c�

t

k=1
pk

pt+1(K � t)
; � � � ;

c�
t

k= 1
pk

pK(K � t)

is an element ofA(p; c) which satisfies (15).

To clarify the proof of this result and to see why we might
expect it in the first place, we turn to the change of variable (4)
and focus on (5). We expect the minimizing elementx� to be as
“balanced” as possible given the constraints definingB(p; c); in
fact, in the absence of the component constraints, the minimizing
element would be simply given byc

K
(1; � � � ; 1). In general, this

vector will not be the minimizing element sincea priori it is possible
for (1) to hold whileKps < c for somes = 1; � � � ; K � 1. This
suggests that in constructingx� we should attempt to keep as many
components identical as possible while meeting the constraints onall
the components. In view of (10) this construction would obviously
start with x�i = pi for the smallest indexes and would lead to
guessingx� in the form

x
� = (p1; p2; � � � ; ps; a; � � � ; a) (17)

for some integers = 1; � � � ; K�1 [the cases = K is ruled out by the
strict inequality in (1)] and scalara > 0. Such a choice (17) should
be a reasonable candidate for the most balanced vector inB(p; c),
provided additional constraints are met. First, givens, we must have
ps � a, for otherwise a more balanced vector inB(p; c) could be
constructed (by transfers [4, p. 134]) fromx� given by (17). The
fact thatx� is an element ofB(p; c) further imposesa � ps+1 and
p1 + � � �+ ps + (K � s)a = c. Hence,a is uniquely determined and
the indexs must be selected such that

ps � a � ps+1 with a �
c�

s

k=1
pk

K � s
: (18)

Note that (18) is equivalent toDs�1 � 0 � Ds, thereby giving a
clue for the need of condition (16). In Theorem 3 below we show
that the guess (17) and (18) is indeed correct.

Theorem 3: Assume (1) and (10) hold.

1) If c � Kp1, then the vectorx� � c

K
(1; � � � ; 1) is an element

in B(p; c) which satisfies

x
�

� x; x 2 B(p; c): (19)

2) If Kp1 < c, then there exists an integert (t = 1; 2; � � � ; K�1)
such that (16) holds, and the vectorx� defined by

x
�

� p1; p2; � � � ; pt;
c�

t

k= 1
pk

K � t
; � � � ;

c�
t

k=1
pk

K � t

(20)

is an element ofB(p; c) which satisfies (19).

Theorems 2 and 3 are clearly equivalent in view of the transfor-
mation (4).

Proof: We haveD0 � D1 � D2 � � � � � DK�1 as we note
that

Ds �Ds�1 = (K � s)(ps+1 � ps) � 0; s = 1; � � � ; K: (21)

Claim 1: If c � Kp1, then c

K
� pk; k = 1; � � � ; K; and the

vector c

K
(1; � � � ; 1) is indeed an element ofB(p; c); that it satisfies

(19) is well known [4, p. 7].
Claim 2: The conditionKp1 < c is equivalent toD0 < 0, and

(1) yieldsDK�1 > 0. The existence of an integert satisfying (16)
follows from (21), andx� given by (20) is thus well defined. As
a consequence of (16) this vector is an element ofB(p; c), and its
components are inincreasingorder. Thus, in order to establish its
minimality within B(p; c), we need only show for any elementx of
B(p; c) that

k

i= 1

x
�

i �

k

i=1

x(i); k = 1; � � � ; K: (22)

If pi < x(i) for some i = 1; � � � ; K, then at most(i � 1)
components ofx do not exceedpi, but this contradicts the fact that
at leasti components inx lie in the interval[0; pi]. Hence,x(i) � pi
for all i = 1; � � � ; K, and (22) holds fork = 1; � � � ; t.

Next, suppose thatn is the first index greater thant for which
(22) fails, i.e.,

n

i= 1

x
�

i <

n

i=1

x(i) and
n�1

i= 1

x
�

i �

n�1

i=1

x(i): (23)

From (23) we note that

n�1

i=1

x
�

i + x
�

n =

n

i= 1

x
�

i <

n

i=1

x(i) �

n�1

i=1

x
�

i + x(n) (24)

so thatx�n < x(n). On the other hand, the first part of (23) is
equivalent to K

i=n+1
x�i >

K

i=n+1
x(i) [via the equality constraint

in (3)], and from (20) we get

(K�n)x�n = (K�n)
c�

t

k= 1
pk

K � t
>

K

i=n+1

x(i) � (K�n)x(n):

The resulting inequalityx(n) < x�n is in clear contradiction with the
conclusionx�n < x(n) derived earlier from (24), and (22) must hold
for k = t+ 1; � � � ; K.

The integert satisfying (16) maynot be unique if some of the
components ofp are identical. However, in such circumstances,x�

defined through (20) is easily seen to be independent of the particular
choice of t.

III. N ONBLOCKING SWITCHES WITH OUTPUT QUEUEING

In this section we present the model used by the authors in
[3] to discuss various stochastic comparison results for a class of
nonblocking switches with output queueing. WithK input ports
and L output ports, this model is parameterized by a vector of
rates (in [0; 1]L) and by probability vectorsrk = (rk1; � � � ; rkL)
(in SL � fr = (r1; � � � ; rL) 2 [0; 1]L : L

`=1
r` = 1g), k =

1; � � � ; K. We organize theseK vectors into theK � L routing
matrix R � (rk`). With each set of such vectors, we associate
f0; 1g-valued rv’sfAk

t+1(�k); t = 0; 1; � � �g andf1; � � � ; Lg-valued
rv’s f�kt (rk); t = 0; 1; � � �g; k = 1; � � � ; K. These rv’s are all
defined on some probability triple(
;F ;P) and satisfy the following
assumptions: 1) For eachk = 1; � � � ; K, the rv’s fAk

t+1(�k); t =
0; 1; � � �g are i.i.d. rv’s with

P A
k
t+1(�k) = 1 = 1�P A

k
t+1 = 0 = �k

for all t = 0; 1; � � � ; 2) For eachk = 1; � � � ; K, the rv’sf�kt (rk); t =
0; 1; � � �g are i.i.d. rv’s with

P �
k
t (rk) = ` = rk`; ` = 1; � � � ; L
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for all t = 0; 1; � � � ; and 3) The 2K collections of rv’s
fAk

t+1(�k); t = 0; 1; � � �g and f�k
t
(rk); t = 0; 1; � � �g, k =

1; � � � ; K, are mutually independent.
These quantities are given the following interpretation [3]: At the

beginning of time slot[t; t + 1), new cells arrive into the system,
with theAk

t+1(�k) cell arriving at thekth input port,k = 1; � � � ; K.
The destination�k

t
(rk) of the cell arriving at thekth input port is

declared upon arrival. All cells which arrive during a time slot and
which are destined for a given output port are transported across the
switch during that single time slot and put into the corresponding
output buffer inrandomorder. Thus, during time slot[t; t + 1), the
cells destined for thèth output port,̀ = 1; � � � ; L, form a batch of
size �`

t+1( ;R) given by

�
`

t+1( ;R) �

K

k=1

1 �
k

t
(rk) = ` A

k

t+1(�k)

and at most one of these�`
t+1( ;R) cells can be transmitted, or

equivalently, served during time slot[t; t+1). Let Q`

t
( ;R) denote

the number of cells present at the beginning of time slot[t; t+1) in
the `th output buffer. If we assume the system to be initially empty
at time t = 0, then the queue size process evolves according to the
recursion

Q
`

t+1( ;R) = Q
`

t
( ;R)� 1

+
+ �

`

t+1( ;R); t = 0; 1; � � �

Q
`

0( ;R) = 0: (25)

For each` = 1; � � � ; L andn = 1; 2; � � � ; let D`

n
( ;R) denote the

delay of thenth cell to arrive at thè th output port, i.e.,D`

n
( ;R)

represents the time that elapses between the arrival of thenth cell
at the `th output port and the end of its transmission. At each of
the output queues, we assume that batches are processed in the order
of arrival, i.e., all cells in themth batch are served before the cells
in the (m + 1)st batch,m = 1; 2; � � � ; but the order of service
within a given batch is random. As a result, the delay process of
the nth cell can be decomposed into two successive stages, so that
D`

n
( ;R) = W `

n
( ;R)+B`

n
( ;R), where the rvW `

n
( ;R) counts

the number of slots required for transmitting all the cells in the batches
which have arrived before that containing thenth cell, and the rv
B`

n
( ;R) counts the number of slots that thenth cell needs to wait

before it is served, once the batch to which it belongs starts being
served.

The recursions (25) are very similar to the Lindley recursion for
single server queues, and by arguments similar to those used in that
context, the following facts can be shown: For each` = 1; � � � ; L,
we define the offered load to thèth output buffer by

�`( ;R) �

K

k=1

�krk`: (26)

If �`( ;R) < 1, then there exists anIN-valued rvQ`

( ) such that
the one-dimensional convergenceQ`

t
( ;R) =)t Q`

( ;R) takes
place, and thèth output queue is then said to bestable. In that case,
we also haveD`

n
( ;R) =)n D`

( ;R) for some rv’sD`

( ;R)

given byD`

( ;R) =st Q
`

( ;R) + B`

( ;R) whereB`

( ;R) is
the forward recurrence time associated with�`1( ;R), andQ`

( ;R)

andB`

( ;R) are independent rv’s.

IV. COMPARISON RESULTS AND ONE-DIMENSIONAL BOUNDS

We now present several stochastic comparison results that describe
how changes in arrival rates and routing probabilities affect the
various performance measures; these results were obtained in the
companion paper [3]. To simplify the presentation, for each rate

vector and routing matrixR, we write

`( ;R) � (�1r1`; � � � ; �KrK`); ` = 1; � � � ; L:

Throughout, the notation�icx is used to denote the convex increasing
ordering on the collection of distributions onIR [5].

Theorem 4: Assume that for somè= 1; � � � ; L, the comparison

`( ;R) �w

`(
0

;R
0

) (27)

holds. Then, we haveQ`

t
(

0;R0

) �icx Q
`

t
( ;R) for all t = 0; 1; � � �.

If in addition �`( ;R) < 1, then in statistical equilibrium we have
Q`

(
0;R0

) �icx Q
`

( ;R) andD`

(
0;R0

) �icx D
`

( ;R).
Under (27), the stability condition�`( ;R) < 1 implies

�`(
0;R0

) < 1, so that thè th output queue is stable in both systems
and the comparisons have a well-defined meaning. Furthermore, if
the total load (26) to thèth output queue is constrained to some
given value, then (27) is equivalent to

`( ;R) � `(
0

;R
0

): (28)

Theorem 4 thus suggests a way to obtain lower and upper bounds
on the queue size metrics (among other things) by seeking the
“extremizers” in the conditions (28) under certain load constraints;
this leads to the generic problems presented in Section I. For the
remainder of the discussion, we fix some` = 1; � � � ; L and consider
two situations which are both associated with the`th output queue.

Problem A: For a given arrival vector , we seek the routing
matrix R which icx-minimizes (respectively,icx-maximizes) the
performance measures at the`th output queue subject to the total
load (26) to thè th output queue being constrained to some given
value, say�`. In view of Theorem 4 (and remarks following it) it
suffices to identify routing matricesR� andR+ such that

`( ;R
�

) � `( ;R) � `( ;R
+
) (29)

among the routing matricesR which satisfy the load equation

K

k= 1

�krk` = �`: (30)

Being concerned only with thèth output queue, we need only specify
the `th column of the routing matrices involved, and the problem
thus reduces to finding vectorsc� and c

+ in the setA( ; �`)

such that( ; c�) � ( ; c) � ( ; c+) for all c in A(�; �`).
With this notation,c�; c; and c+ represent thè th column of the
routing matricesR�;R; andR+, respectively, appearing in (29). By
invoking the results of Section II we can now easily characterizec

�

andc+, and we do so under the assumptions0 < �1 � � � � � �K
and 0 < �` <

K

k= 1
�k.

By specializing Theorem 1, we find

c
+ � 0; � � � ; 0

m�2

; a
+
; 1; � � � ; 1

K�m+1

with m and a+ given by

m � min i = 2; � � � ; K :

K

k=i

�k � �`

and

a
+ �

�` �
K

k=m
�k

�m�1

:

Here we use the natural convention that if the set of indexes entering
the definition ofm is empty, thenm = K + 1 and K

k=m
�k = 0.

On the other hand, Theorem 2 immediately yields the following: if



442 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

�` � K�1, then c� = (
�

K�
; � � � ; �

K�
), whereas ifK�1 < �`,

then there existst (t = 1; � � � ; K � 1) such that

�t � a
� �

�` �
t

k=1
�k

K � t
� �t+1 (31)

and we have

c
�

= 1; � � � ; 1

t

;
a�

�t+1
; � � � ;

a�

�K
: (32)

In sum, for a given arrival vector , any routing matrix whose
`th column is given byc+ (respectively,c�) will icx-minimize
(respectively,icx-maximize) the performance measures at the`th
output queue subject to the load constraint (30).

When the input ports areequiloaded, i.e., � �

K
(1; � � � ; 1)

for some � > 0, the feasibility constraint reads�` < �, and
additional simplifications occur. As expected, we find that (31) and
(32) specialize toc� =

�

�
(1; � � � ; 1), and we have

m = K 1�
�`

�
+ 1 and a

+
=

K�` � (K �m+ 1)�

�
:

Problem B: For a given routing matrixR, we now seek the
arrival vector which icx-minimizes (respectively,icx-maximizes)
the performance measures at the`th output queue subject to the load
constraint (30) at thèth output queue. Again, we need only identify
arrival vectors � and + such that`( �;R) � `( ;R) �

`(
+;R) for all arrival vectors satisfying (30). Withc` denoting

the `th column of the routing matrixR, the problem reduces to
finding vectors � and + in A(c`; �`) such that

(
�

; c`) � ( ; c`) � (
+
; c`); 2 A(c`; �`): (33)

In order to characterize � and +, we again invoke the results
of Section II under the assumptions0 < r1` � � � � � rK` and
0 < �` <

K

k=1
rk`. This time, under the same convention as

before, we have

+
= 0; � � � ; 0

m�2

; b
+
; 1; � � � ; 1

K�m+1

with m and b+ given by

m � min i = 2; � � � ; K :

K

k= i

rk` � �`

and

b
+ �

�` �
K

k=m
rk`

rm�1;`
:

From Theorem 2, if�` � Kr1`, then � = (
�

Kr
; � � � ; �

Kr
),

whereas ifKr1` < �`, then there existst (t = 1; � � � ; K � 1) such
that

rt` � b
� �

�` �
t

k=1
rk`

K � t
� rt+1;`

and we have

�

= 1; � � � ; 1

t

;
b�

rt+1;`
; � � � ;

b�

rK`

:

Therefore, for a given routing matrixR, the arrival vector +

(respectively, �) icx-minimizes (respectively,icx-maximizes) the

performance measures at the`th output queue subject to the load
constraint (30) at that queue. In general, these one-dimensional results
are not independent of̀, i.e., the vectors � and + do not
simultaneously satisfy (33) under (30) forall ` = 1; � � � ; L. This
can be remedied by considering the often-studied situation where
the addressing scheme isinput independentin the sense thatR has
all its row identical withrk = r; k = 1; � � � ; K, for some vector
r = (r1; � � � ; rL) in SL. In that case, the constraint (30) becomes

K

k=1
�k =

�

r
� �, with 0 < � < K, and the inequalities

(29) are satisfied simultaneously forall ` = 1; � � � ; L by the vectors
� = �

K
(1; � � � ; 1) and

+
= 0; � � � ; 0

m�2

; �� (K �m+ 1); 1; � � � ; 1

K�m+1

with

m � dK � �e + 1:

REFERENCES

[1] C.-S. Chang, X. L. Chao, and M. Pinedo, “A note on queues with
Bernoulli routing,” in Proc. 29th IEEE Conf. Decision and Control,
Honolulu, HI, Dec. 1990, pp. 897–902.

[2] C.-S. Chang, “A new ordering for stochastic majorization: Theory and
applications,”Advances Appl. Prob.vol. 24, pp. 604–634, 1992.

[3] Y.-B. Kim and A. M. Makowski, “Stochastic comparison results for
nonblocking switches with output queueing,”Stochastic Models, to be
published.

[4] A. W. Marshall and I. Olkin,Inequalities: Theory of Majorization and
Its Applications. New York: Academic, 1979.

[5] S. Ross,Stochastic Processes. New York: Wiley, 1984.

Diagonal Matrix Solutions of a Discrete-Time
Lyapunov Inequality

Harald K. Wimmer

Abstract—Diagonal solutions of a Lyapunov inequality for companion
matrices are studied. Such solutions are required if states of a discrete-
time linear system are computed with a finite-precision arithmetic.

Index Terms—Companion matrix, critical exponent, diagonal stability,
discrete Lyapunov equation.

I. INTRODUCTION

Let

x(i+ 1) = Ax(i); x(0) = x0 (1)

be a discrete-time linear system withx(i) = (x1(i); � � � ; xn(i))
T 2

Cn. It is well known that (1) is asymptotically stable if and only if
there exists a matrixP > 0 (positive-definite) such that

A
�

PA� P = �Q�Q (2)

and
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