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If V= R", thenX is said to be globally,-constructible.

Remark 2: [,-observability corresponds to the case = 0,
and therefore it implieg,-constructibility. The difference between
these two notions is the following: roughly speaking, in the
case ofl,-observability one is able to detect from the output
y = {y(0).y(1),---} a nonzero initial statero at time zero; in  gjmple Optimization Problems via Majorization Ordering
other words, this nonzero initial state can be detected using only
present and future outputs. In the casel,gtonstructibility one is
able to detect from the output a nonzero state; at time¢;; in
other words, this state can be detected using a finite number of
past outputs, present, and future ones. The error of Propositlon 6)Abstract—We introduce and explicitly solve a novel class of optimization
regarding thel,,-observability of £, is closely connected to this problems which are motivated by load assignment issues in crossbar
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difference. It is proven that i. = 0 and ), is any state at timé,

one hagly||, > |zx,. In other words, the following result only has

been proven [instead of 4)].

Proposition 1: ¥ is globally /,,-constructible.

As was said above, in the case of a linear systgrpnstructibility
is equivalent to the usual constructibility:

Proposition 2: Consider the linear time-invariant system de-
fined byz(t + 1) = Ax(t), y(t) = Cx(t). For anyp € [1, 0], the
pair (C, A) is constructible (in the usual sense) if, and onlyxif
is 1,-constructible.

Proof:

1) Assume thatC, A) is constructible, i.e.,

Ker © C Ker A™ (5)

whereQ = [T, ATCT, .-, (A")"7C*]". In other words,
there exists a linear mapping : R‘" — R" such that
A" = ¥Q. Therefore,z(n) = ¥[y(0)", -, y(n — 1)1,
hencelz(n)|, < |||yl andX; is I,-constructible.

2)
exists an initial staterp in Ker 2 which does not belong to
Ker A™. It follows that for anyk > 0, xo cannot belong to
Ker A*; hence for everyk > 0, x(k) is nonzero, whereas
y = 0. Therefore X; is notl,-constructible.

Let us now consider again the nonlinear systénirhe following

result is a refinement of Proposition'4.

Proposition 3: Assume thatt is locally 7,,-reachable, locally,-

switches with output queueing. The optimization criterion is given in the
majorization ordering sense. The solution to these problems indirectly
provides solutions to a large class of convex optimization problems under
a linear constraint.

Index Terms—Convex optimization, crossbar switches, majorization,
output queueing, Schur-convex mappings.

|. INTRODUCTION

The notion of majorization (and its derivatives) provides a powerful
tool to formalize statements concerning the relative size of the
components of two vectors, viz., the componefis, - - -, xx) of
the vectorx are “less spread out” than the compongts - - -, yr )
of the vectory. As elegantly demonstrated in the monograph of
Marshall and Olkin [4], these notions have found widespread use in
many diverse fields of mathematics and their applications. Recently,
several authors have made use of majorization ideas to identify
optimal scheduling and load balancing strategies for various resource
allocation problems [1], [2]. In this paper, we consider a novel class
of optimization problems which are motivated by load assignment
issues in crossbar switches with output queueing; this application is

Conversely, assume thdt, A) is not constructible. Then, there giscyssed in some detail in Sections 11l and IV. These optimization

problems are in the majorization sense and have the following generic
form: for every vectomp in IR,fﬁ and every constant > (), we define
the subsetd(p,¢) of [0,1]" by

K

Ao, 1) Z PEAL = ¢

k=1

A(p;c) = {

constructible, and that the associated input-output operator is locaflyis set.A(p; ¢) is nonempty whenever satisfies the condition
l,-stable. Then, for any € [1, o], zero is a stable equilibrium point

(in the sense of Lyapunov) of the unforced system associated*with

This equilibrium point is locally asymptotically stableyif< oo. This
result still holds if “locally” is replaced everywhere by “globally.”

Proof: The proof is identical to that of Propositior 4ip to
the point wherd,-observability is used. Assuming thatis locally
lp,-constructible, there exist a timg and a function« of class K
such thatlly — yi—,—1llp > a(lz(t)],), Vt > 7 + 1, if the initial
statexo at timer is small enough. In addition, as the functignis
continuous, the state(t) at timest such thatr < ¢t <7+t —1

K
0<e< Zpk.

k=1
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With < denoting the majorization ordering (a precise definition ikold. If conditions (8) all hold without (9), then we say thatis

given at the end of this section), we seek vectars and A~ in
A(p;c) such that

YAT.p) < ¥Ap) <v(AT.p).  A€Aic) (2
where we have used the notation
YAP) = (Mipr, - AP, Aelo, 1", p e RY.

Explicit expressions for the optimizera™ and A~ in terms

weakly supermajorizelly y and writex <* y [4, A.2, p. 10].

Il. THE MAIN RESULTS

In this section we establish the existence of and expressions for the
vectorsA™ and AT satisfying (2). Throughout we assume the vector

p to be selected so that

0<pr <pa <-e- <pie (10)

of ¢ and p are presented in Section Il under the mild condition

ming—: ... x px > 0. In addition to answering some natural questionand we leave it to the reader to check that there is no loss of generality

raised by the results of [3], the material of Section Il contains i@ doing so.
curious byproduct which is of independent interest, especially to Theorem 1: Assume (1) and (10) hold.

readers interested in convex optimization, and which we now developl) If ¢ < pg, then the vectoa™ = (0,---
When identifying A~ [Theorem 2], we shall find it convenient

to associate withA(p; ¢) another subseB(p;c) = {v(A,p), A €
A(p; c)}. The setB(p; c) is also characterized by

B(p; )

{XE]RK:OSxk Spk* kzla"'eI{;

K

Z T = c} (©)]

k=1

and is in one-to-one correspondence withp; c) through the trans-

formations

A=
Di

The original problem of finding\™ and A™ in A(p;c) satisfying

(2) is equivalent to that of finding elements andx™ in B(p: ¢)

such that

x =~v(A,p) ifand only if i=1,---, K. (4)

X <x<x", x € B(p;¢) (5)

with x and X related through (4).
The relation < being a partial ordering odR”, it is natural
to seek the mappingg : IRX — IR which are monotonicfor

the majorization ordering<, i.e., mappings with the property that
¢(x) < ¢(y) wheneverx < y. Such mappings are called Schur
convex mappings in honor of Schur who first studied them; the cl
of Schur-convex functions is very large and includes convex a R ’
symmetric mappings [4, C.2, p. 67] among other things. From (3)1€ definition (12) ofm yields0 <

we conclude that
P(x7) < p(x) < p(xT), (6)

for any Schur-convex functionp : IR® — IR, and the vectox™
(respectivelyx™) is thus a solution to the optimization problem

@)

Note that the samevector x~ (respectively,x™) simultaneously

x € B(p: )

Minimize (respectively, Maximize} over the sef3(p;c).

solvesall the corresponding problems (7) with Schur-convex func-

tions .
Regarding the notation, theth component of any element in
IR is denoted either by:* or by 24, k = 1,---, K, so thatx =

(z',-+,2™)or(z1, -+, 2x). Asimilar convention is used fdR " -
valued random variables (rv's). For any vector= (z1,---,zx) in
RE, let ry <z < -+ < 2y denote the components of

arranged in increasing order. For vectsrsandy in IR®, we say

thatx is majorizedby y, and writex < y, whenever the conditions

k k
Z Ty 2 Z Yy

=1 i=1

E=1,2,--, K ®)

and

K K
Sr=3m

=1 =1

9)

,0, i) is an element
of A(p;c) which satisfies

YA p) < 7v(AT,p), A€ A(pic). (11)
2) If px < ¢, there exists a unique integet (m = 2,---, K)
such that
K K
Z pe L e < Z Dk (12)
k=m k=m—1
and the vecton\™ defined by
K
AT = 0’...’()*%_’17...,1 (13)
N e’ Pm—1
m—2 K—m+1

is an element of4(p; c) which satisfies (11).

Proof—Claim 1: If ¢ < px, then the vectof0,---,0, i) is
indeed an element ofi(p; ¢), and the validity of (11) is well known
in that case. ]

Claim 2: SetQ; = Y& pi, i = 1,---, K. Conditionpx < ¢
and (1) together imply? x < ¢ < (1. The existence and uniqueness
of the integerm satisfying (12) immediately follows from the strict

argg)no’[onicity ofc—Q;,i=1,---,K, a fact implied by (10). We

o conclude from (1) that < m < K and A" is well defined.
N < 1, and Xt is therefore
an element ofd(p; ¢). It is also plain that\tp, < Afp, < --- <
Movk.

To establish (11) for soma in A(p;¢), it suffices to show that
for any permutatiorr of {1,---, K'}, we have the inequalities

K K
Z Ao(i)Po(i) < Z A pi.

1=k 1=k

Using (13) and the definition afl(p; ¢),

K K
Z Ad(i)pa'(i) Le= Z Aj_pt

i—=k i=k

and (14) thus holds fot = 1,-- -, m — 1. On the other hand, because
Aoy <AF =1,i=m,---, K, we have from (10) that

K K K
Z As(i)Po(i) < Zpa(i) < Z A i

k=1,---,K. (14)
we see that

k=1,---,m—-1

k=m, - K
1=k i=k i=k
and (14) also holds fok = m,---, K. O
The quantitiesDy, = Kp; — ¢ and
DSE(K—s)szrl—<C—Zp,->, s=1,---, K -1

=1

will be useful for characterizing the vector~ which satisfies (2).
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Theorem 2: Assume (1) and (10) hold. Clam1: If ¢ < Kpy, then & < p, & = 1,---, K, and the

1) If ¢ < Kpy, then the vecto\™ = (ﬁﬁ) is an vectqr%(l,---,l) is indeed an element df(p; c); that it satisfies
element inA(p; ¢) which satisfies (19) is well known [4, p. 7].

Claim 2: The conditionK'p; < ¢ is equivalent toD, < 0, and

VAT, p) < ¥(A.p), A € A(p; o). (15) (1) yields Dk —1 > 0. The existence of an integérsatisfying (16)

follows from (21), andx™ given by (20) is thus well defined. As

2) If Kp1 < ¢, then there exists an intege(t = 1,2,---, K —1) ) ) .
a consequence of (16) this vector is an elemenB@h; c), and its

such that " ' g i
components are imcreasingorder. Thus, in order to establish its
D1 £0< Dy (16)  minimality within B(p; ¢), we need only show for any elemestof
and the vectorA~ defined by B(p;c) that
k k
t t _ .
PN RSt B SR b DI ST U Doz k=l K @2
— pir1(K —1t) pi (K —t) i=1 i=1
) ' ] o If pi < x() for somei = 1,-..,K, then at most(: — 1)
is an element ofA(p; c) which satisfies (15). components ok do not exceeg;, but this contradicts the fact that
To clarify the proof of this result and to see why we mightt leasti components irx lie in the interval[0, p;]. Hencea iy < p;
expect it in the first place, we turn to the change of variable (4pr all i = 1,.--, K, and (22) holds fok: = 1,---,¢.

and focus on (5). We expect the minimizing elemeant to be as  Next, suppose that is the first index greater thanh for which
“balanced” as possible given the constraints definifigp; ¢); i (22) fails, i.e.,

fact, in the absence of the component constraints, the minimizing N " . -

element would be simply given by-(1,---,1). In general, this - . o o

vector will not be the minimizing eleﬁent sinaq)ariori it is possible 2w < e and el 2w 23)
for (1) to hold while Kp; < ¢ for somes = 1,---, K — 1. This

suggests that in constructing” we should attempt to keep as many oM (23) we note that

=1 =1 =1 =1

components identical as possible while meeting the constrairgd on n—1 n n n—1
the components. In view of (10) this construction would obviously Z x, +a, = Z x; < Z () < Z T, + Ty (24)
start with z; = p; for the smallest indexes and would lead to =1 i=1 i=1 i=1
guessingx™ in the form so thatz;, < x(,. On the other hand, the first part of (23) is
X7 = (Prapasc s Dartly e, 01) (17) equivalenttdy [t =7 > 31 | a(;) [via the equality constraint
) i . in (3)], and from (20) we get
for some integes = 1,---, K —1 [the cases = K is ruled out by the
strict inequality in (1)] and scalar > 0. Such a choice (17) should __ c— 22::1 Dk

K
> Z xiy > (K —n)xe,).
imntl

be a reasonable candidate for the most balanced vectBtpac), K —n)z, = (K —n)

provided additional constraints are met. First, givemve must have
ps < a, for otherwise a more balanced vector fiip; ¢) could be  The resulting inequality .y < x,, is in clear contradiction with the
constructed (by transfers [4, p. 134]) fror1 given by (17). The conclusionz;, < (. derived earlier from (24), and (22) must hold

K —t

fact thatx™ is an element of3(p; c) further imposest < p,4+1 and  for k =¢+1,---, K. O
pi+---+ps+ (K —s)a=c Hencea is uniquely determined and  The integert satisfying (16) maynot be unique if some of the
the indexs must be selected such that components op are identical. However, in such circumstances,
’ ’ . = > Pk defined through (20) is easily seen to be independent of the particular
ps Sa<pspy With o= ——=F=1—. (18)  choice oft.
Note that (18) is equivalent t&,_; < 0 < D,, thereby giving a
clue for the need of condition (16). In Theorem 3 below we show IIl. N ONBLOCKING SWITCHES WITH OUTPUT QUEUEING
that the guess (17) and (18) is indeed correct. In this section we present the model used by the authors in
Theorem 3: Assume (1) and (10) hold. [3] to discuss various stochastic comparison results for a class of
1) If ¢ < Kpy, then the vectox™ = +(1,---,1) is an element nonblocking switches with output queueing. Wifki input ports
in B(p; c) which satisfies and L output ports, this model is parameterized by a vector of
. r; e _ .
X <X x € B(pic). (19) rates (in [0,1]") and by probability vectors, = (rx1,--+,7%L)

(N Sy = {r = (r,=--,r) €[0,1]" : Yy v = 1}), k =
2) If Kp;1 < c, then there exists an integeft = 1,2,---, K—1) 1,---,K. We organize thesd\ vectors into thell’ x L routing

such that (16) holds, and the vector defined by matrix R = (rre). With each set of such vectors, we associate
R R {0, 1}-valued rv's{Af (A1), t =0,1,---} and{1,---, L}-valued
%~ = <p1,pz,---,pt, ¢ Z;k:1p“7...7° Zkﬂpk") s {vf(ry), t = 0,1,---}, k = 1,---,K. These rv's are all
K-t K-t defined on some probability triplé2, 7, P) and satisfy the following

(20) assumptions: 1) For eadh= 1,---, K, the rv's {Af ,(\;), t =

is an element of3(p; ¢) which satisfies (19). 0,1,---} are iid. rv's with

Theorems 2 and 3 are clearly equivalent in view of the transfor- P [A’;H(Ak) = 1] =1—-P [Aﬁrl = ()] = A\
mation (4).
Proof: We haveDy < D; < Dy < --- < Dx_, as we note forall#=0,1,---;2) Foreachk = 1,---, K, the v's{v/(rs), t =
that 0,1,---} are i.i.d. rv’'s with

D,—D. 1 =(K—-5)(psr1—ps) >0, s=1,---,K. (21) Plvi(re)=(] =ree, (=1,---.L
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for all ¢ = 0,1,---; and 3) The 2K collections of rv's vector A and routing matrixR, we write
{AF (A, t = 0,1,---} and {pf(rs), t = 0,1,---}, k = N .
1,-.-, K, aremutually independent e R) = (Airies -2 A i), t=1--,L

These quantities are given the following interpretation [3]: At thehroughout, the notatiost;.... is used to denote the convex increasing
beglnr"ng of time SlOI[t,t + 1), new cells arrive into the System,ordering on the collection of distributions dR [5]

with the A7, () cell arriving at thekth input port.k =1.---. K. Theorem 4: Assume that for somé= 1,- -, L, the comparison
The destination/f (r;) of the cell arriving at thekth input port is L
declared upon arrival. All cells which arrive during a time slot and V(A R) <Y 7(XN.R) (27

which are destined for a given output port are transported across m)?d
switch during that single time slot and put into the correspondiqg
output buffer inrandomorder. Thus, during time sidt, ¢ + 1), the
cells destined for théth output port/ = 1,---, L, form a batch of
size &, (A, R) given by

s. Then, we hav@{ (X', R’) <i.. Qi (A R)forallt =0,1,---.
in addition p,(X, R) < 1, then in statistical equilibrium we have
QN R/) <iew Q°(AR) and DN, R’) <;c. D'(A\R).

Under (27), the stability conditionp,(A,R) < 1 implies
pe(XN,R’) < 1, so that theth output queue is stable in both systems

K and the comparisons have a well-defined meaning. Furthermore, if
£f+l()\§ R)= Z 1[uf(rk) = (] A_ﬁl()\k) the total load (26) to théth output queue is constrained to some
k=1 given value, then (27) is equivalent to
and at most one of theﬁﬂ()\, R) cells can be transmitted, or (A R) < v (N, R). (28)

equivalently, served during time slgt ¢ 4+ 1). Let QY (). R) denote .
the number of cells present at the beginning of time Bldt-+ 1) in Theorem 4 thus suggests a way to obtain lower and upper bounds

the (th output buffer. If we assume the system to be initially empt§" the queue size metrics (among other things) by seeking the

at time = 0, then the queue size process evolves according to ihxtremizers” in the conditions (28) under certain load constraints;
' this leads to the generic problems presented in Section I. For the

recursion remainder of the discussion, we fix sormhe- 1,---, L and consider
Qi AR) = [QI(AR) - 1]" +¢ 1 (AR), +=0,1,---  two situations which are both associated with ttte output queue.
Qé()\, R) = 0. (25) Problem A: For a given arrival vector\, we seek the routing
matrix R which icz-minimizes (respectivelyjcz-maximizes) the

For eachl = 1,---.L andn = 1,2,---, let D5 (A, R) denote the performance measures at tiigh output queue subject to the total

delay of thenth cell to arrive at the'th output port, i.e.D5 (X, R) load (26) to thefth output queue being constrained to some given
represents the time that elapses between the arrival oftiesell Value, sayp. In view of Theorem 4 (and remarks following it) it
at the (th output port and the end of its transmission. At each @uffices to identify routing matriceR ™ and R™ such that

the output queues, we assume that batches are processed in the order AR™ +

- . ) Ye(A, < 7% AR) < v (AR 29
of arrival, i.e., all cells in thenth batch are served before the cells el ) <7 R) < %A RT) (29)
in the (m + 1)st batch,m = 1,2,---, but the order of service among the routing matricéR which satisfy the load equation
within a given batch is random. As a result, the delay process of 1
the nth cell can be decomposed into two successive stages, so that Z AkTke = pe. (30)

D! (A R) = WE(A R)+BS (A R), where the rd¥{ (X, R) counts
the number of slots required for transmitting all the cells in the batch%s_ d onlv with theh donl .
which have arrived before that containing théh cell, and the rv eing concerned only with t output queue, we need only specify

BL(A R) counts the number of slots that théh cell needs to wait the (th column of the routing matrices involved, and the problem

e ° v .

before it is served, once the batch to which it belongs starts beiﬂys reduces tg finding vectors and;: in the _setA()\, pe)

served. stch thaty(A,¢™) < v(A,¢) < (A, et) for all ¢ in A(X; po).
The recursions (25) are very similar to the Lindley recursion fof/ith this notation,c™, ¢, and c™ represent théth column of the

, . z 4 : L
single server queues, and by arguments similar to those used in {I?é’t'lt'ng matrice®t ', R, and_R ; Tespectively, appearing in (29); By
context, the following facts can be shown: For edck 1.---, L invoking the results of Section Il we can now easily charactetize

+ i “ e i
we define the offered load to thigh output buffer by andc™, and we do so under the assumptidng’ A < -« < Ax
and0 < pe < 30 Ak

k=1

K By specializing Theorem 1, we find
pe(AR) = Z/\krkl- (26)
k=1
; _ ct=10,---,0,a",1,--,1
If pe(A,R) < 1, then there exists alN-valued rvQ*(\) such that ~—— ~——
the one-dimensional convergené® (A, R) =, Q“(\, R) takes m=2 K—mti

place, and théth output queue is then said to bable In that case, with ; andat given by

we also haveD’ (A, R) =, D*(A\,R) for some rnv'sD(\,R) .

given by D‘(A,R) =., Q*(A\.R) + B*(A\,R) where B‘(A\,R) is N P N
the forward recurrence time associated vgifh\, R), andQ‘(\, R) S =S A g k=

and B*(A, R) are independent rv’s.
and

K
IV. COMPARISON RESULTS AND ONE-DIMENSIONAL BOUNDS at=P " Zik=m /\k.
We now present several stochastic comparison results that describe Am-1
how changes in arrival rates and routing probabilities affect thdéere we use the natural convention that if the set of indexes entering

various performance measures; these results were obtained in ttreedefinition ofm is empty, thenm = K 4+ 1 and ZK A = 0.

k=m

companion paper [3]. To simplify the presentation, for each ra@n the other hand, Theorem 2 immediately yields the following: if
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pe < KXy, thenc™ = (r‘pgﬁ‘;) whereas ifK'A\; < p¢, performance measures at tiith output queue subject to the load
then there exist$ (¢ = 1,---, K — 1) such that constraint (30) at that queue. In general, these one-dimensional results
¢ are not independent of, i.e., the vectorsA\~ and At do not
A <a” = w < At (31) simultaneously satisfy (33) under (30) fatl ¢ = 1,---, L. This
K-t can be remedied by considering the often-studied situation where
and we have the addressing schemeiigput independenin the sense thaR has
_ _ all its row identical withry = r, k = 1,--., I, for some vector
¢ =|1,---,1, 4 Jeee, e . (32) r = (r1,---,7r.) in S.. In that case, the constraint (30) becomes
— At+1 Ak K\ = 2o = A, with 0 < A < K, and the inequalities
] ) ) ) (29) are satisfied simultaneously fall ¢ = 1,---, L by the vectors
In sum, for a given arrival vectol, any routing matrix whose y-"_ A(1,---,1) and

(th column is given byc™ (respectively,c™) will icz-minimize
(respectively,icz-maximize) the performance measures at tte

output queue subject to the load constraint (30). At=1[0,00A- (K -m+1),1,---,1

When the input ports areequiloaded i.e., A = %(1‘---,1) e 1“'—‘{_7”“
for some A > 0, the feasibility constraint reads, < X, and ]
additional simplifications occur. As expected, we find that (31) anfith
(32) specialize taw™ = 5(1,---,1), and we have m=[K -\ +1.

. , Kpr—(K—m+ 1)\

m = ’VIx( — %)—I +1 and (L+ = pe ( \ ) . REFERENCES

Problem B: For a given routing matrixR, we now seek the [1] C.-S. Chang, X. L. Chao, and M. Pinedo, “A note on queues with
arrival vector which icz-minimizes (respectivelyicz-maximizes) Bernoulli routing,” in Proc. 29th IEEE Conf. Decision and Contyol

the performance measures at thie output queue subject to the load Honolulu, HI, Dec. 1990, pp. 897-902. o
P putq J [2] C.-S. Chang, “A new ordering for stochastic majorization: Theory and

corjstraint (30) aEthéth OLitput queue. Again, we need only identify applications,"Advances Appl. Probuol. 24, pp. 604—634, 1992.
arrival vectorsA™ and A" such thaty,(A",R) < 7(AR) < [3] Y.-B. Kim and A. M. Makowski, “Stochastic comparison results for
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X Abstract—Diagonal solutions of a Lyapunov inequality for companion
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